本文提出了一种任何时间的超分辨率方法(ARM),以解决过度参数化的单图像超分辨率(SISR)模型。我们的手臂是由三个观察结果激励的:(1)不同图像贴片的性能随不同大小的SISR网络而变化。 (2)计算开销与重建图像的性能之间存在权衡。 (3)给定输入图像,其边缘信息可以是估计其PSNR的有效选择。随后,我们训练包含不同尺寸的SISR子网的手臂超网,以处理各种复杂性的图像斑块。为此,我们构建了一个边缘到PSNR查找表,该表将图像补丁的边缘分数映射到每个子网的PSNR性能,以及子网的一组计算成本。在推论中,图像贴片单独分配给不同的子网,以获得更好的计算绩效折衷。此外,每个SISR子网都共享手臂超网的权重,因此不引入额外的参数。多个子网的设置可以很好地使SISR模型的计算成本适应动态可用的硬件资源,从而可以随时使用SISR任务。对不同大小的分辨率数据集的广泛实验和流行的SISR网络作为骨架验证了我们的手臂的有效性和多功能性。源代码可在https://github.com/chenbong/arm-net上找到。
translated by 谷歌翻译
The mainstream approach for filter pruning is usually either to force a hard-coded importance estimation upon a computation-heavy pretrained model to select "important" filters, or to impose a hyperparameter-sensitive sparse constraint on the loss objective to regularize the network training. In this paper, we present a novel filter pruning method, dubbed dynamic-coded filter fusion (DCFF), to derive compact CNNs in a computation-economical and regularization-free manner for efficient image classification. Each filter in our DCFF is firstly given an inter-similarity distribution with a temperature parameter as a filter proxy, on top of which, a fresh Kullback-Leibler divergence based dynamic-coded criterion is proposed to evaluate the filter importance. In contrast to simply keeping high-score filters in other methods, we propose the concept of filter fusion, i.e., the weighted averages using the assigned proxies, as our preserved filters. We obtain a one-hot inter-similarity distribution as the temperature parameter approaches infinity. Thus, the relative importance of each filter can vary along with the training of the compact CNN, leading to dynamically changeable fused filters without both the dependency on the pretrained model and the introduction of sparse constraints. Extensive experiments on classification benchmarks demonstrate the superiority of our DCFF over the compared counterparts. For example, our DCFF derives a compact VGGNet-16 with only 72.77M FLOPs and 1.06M parameters while reaching top-1 accuracy of 93.47% on CIFAR-10. A compact ResNet-50 is obtained with 63.8% FLOPs and 58.6% parameter reductions, retaining 75.60% top-1 accuracy on ILSVRC-2012. Our code, narrower models and training logs are available at https://github.com/lmbxmu/DCFF.
translated by 谷歌翻译
虽然网络稀疏作为克服神经网络大小的有希望的方向,但它仍然是保持模型准确性的开放问题,并在一般CPU上实现了显着的加速。在本文中,我们提出了一篇新颖的1美元\ Times N $块稀疏模式(块修剪)的概念来打破这种限制。特别是,具有相同输入通道索引的连续$ N $输出内核被分组为一个块,该块用作我们修剪模式的基本修剪粒度。我们的$ 1 \ times n $ sparsity模式prunes这些块被认为不重要。我们还提供过滤器重新排列的工作流程,首先重新排列输出通道尺寸中的权重矩阵,以获得更具影响力的块,以便精度改进,然后将类似的重新排列到输入通道维度中的下一层权重,以确保正确的卷积操作。此外,可以通过并行化块 - 方向的矢量化操作实现在我们的$ 1 \ Times N $块稀疏之后的输出计算,从而导致总基于CPU的平台上的显着加速。通过对ILSVRC-2012的实验证明了我们修剪模式的功效。例如,在50%的稀疏性和$ n = 4 $的情况下,我们的模式在MobileNet-V2的前1个精度的过滤器修剪中获得了大约3.0%的改进。同时,它在Cortex-A7 CPU上获得56.04ms推断,超过体重修剪。代码可在https://github.com/lmbxmu/1xn处获得。
translated by 谷歌翻译
最近的基于学习的图像雨和噪声衰减的繁荣主要是由于精心设计的神经网络架构和大型标记数据集。但是,我们发现当前的图像雨和噪声去除方法导致图像的利用率低。为了减轻对大型标签数据集的依赖,我们提出了基于引入的补丁分析策略的任务驱动的图像雨和噪声(TRNR)。补丁分析策略提供了具有各种空间和统计特性的图像贴片,用于培训,并已被验证以增加图像的利用率。此外,补丁分析策略激励我们考虑学习图像雨和噪声去除任务驱动而不是数据驱动。因此,我们介绍了TRNR的N频率-K射击学习任务。每个N频率-K-Shot学习任务基于包含补丁分析策略采样的NK图像修补的微小数据集。 TRNR使神经网络能够从足够的数据以外的丰富N频率-K射击学习任务中学习。为了验证TRNR的有效性,我们建立了一个浅色多尺度残差网络(MSRESNet),具有约0.9米的参数来学习图像雨量拆卸,并使用简单的RESET与大约1.2M参数配合DNNET进行盲目高斯噪声删除,有一些图像(例如,20.0%的Rain100h培训赛车组)。实验结果表明,TRNR使MSRESNet能够从更少的图像中学到更好的学习。此外,MSRESNet和DNNET利用TRNR获得的性能比大多数最近的深度学习方法在大型标记数据集上受过训练的数据驱动。这些实验结果证实了所提出的TRNR的有效性和优越性。 TRNR的代码将很快公开。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Compressed videos often exhibit visually annoying artifacts, known as Perceivable Encoding Artifacts (PEAs), which dramatically degrade video visual quality. Subjective and objective measures capable of identifying and quantifying various types of PEAs are critical in improving visual quality. In this paper, we investigate the influence of four spatial PEAs (i.e. blurring, blocking, bleeding, and ringing) and two temporal PEAs (i.e. flickering and floating) on video quality. For spatial artifacts, we propose a visual saliency model with a low computational cost and higher consistency with human visual perception. In terms of temporal artifacts, self-attention based TimeSFormer is improved to detect temporal artifacts. Based on the six types of PEAs, a quality metric called Saliency-Aware Spatio-Temporal Artifacts Measurement (SSTAM) is proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics. We believe that SSTAM will be beneficial for optimizing video coding techniques.
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译